首页> 外文OA文献 >Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations
【2h】

Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations

机译:深层生物圈中微生物脂质的周转和底栖古菌种群的生长

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deep subseafloor sediments host a microbial biosphere with unknown impact on global biogeochemical cycles. This study tests previous evidence based on microbial intact polar lipids (IPLs) as proxies of live biomass, suggesting that Archaea dominate the marine sedimentary biosphere. We devised a sensitive radiotracer assay to measure the decay rate of ([14C]glucosyl)-diphytanylglyceroldiether (GlcDGD) as an analog of archaeal IPLs in continental margin sediments. The degradation kinetics were incorporated in model simulations that constrained the fossil fraction of subseafloor IPLs and rates of archaeal turnover. Simulating the top 1 km in a generic continental margin sediment column, we estimated degradation rate constants of GlcDGD being one to two orders of magnitude lower than those of bacterial IPLs, with half-lives of GlcDGD increasing with depth to 310 ky. Given estimated microbial community turnover times of 1.6–73 ky in sediments deeper than 1 m, 50–96% of archaeal IPLs represent fossil signals. Consequently, previous lipid-based estimates of global subseafloor biomass probably are too high, and the widely observed dominance of archaeal IPLs does not rule out a deep biosphere dominated by Bacteria. Reverse modeling of existing concentration profiles suggest that archaeal IPL synthesis rates decline from around 1,000 pg⋅mL−1 sediment⋅y−1 at the surface to 0.2 pg⋅mL−1⋅y−1 at 1 km depth, equivalent to production of 7 × 105 to 140 archaeal cells⋅mL−1 sediment⋅y−1, respectively. These constraints on microbial growth are an important step toward understanding the relationship between the deep biosphere and the carbon cycle.
机译:深层海底沉积物拥有一个微生物生物圈,对全球生物地球化学循环的影响未知。这项研究基于微生物完整的极性脂质(IPL)作为活生物量的代理来测试先前的证据,表明古细菌在海洋沉积生物圈中占主导地位。我们设计了一种灵敏的放射性示踪剂测定法,以测量大陆边缘沉积物中古细菌IPL的类似物([14C]葡萄糖基)-二植烷甘油甘油醚(GlcDGD)的衰减率。降解动力学纳入模型模拟中,该模拟模型限制了海底IPL的化石部分和古细菌周转率。模拟通用陆缘沉积物柱的前1 km,我们估计GlcDGD的降解速率常数比细菌IPL低1-2个数量级,GlcDGD的半衰期随深度增加至310 ky。考虑到深于1 m的沉积物中微生物群落的周转时间为1.6-73 ky,则古细菌IPL的50-96%代表化石信号。因此,以前基于脂质的全球海底生物量估计值可能太高,并且广泛观察到的古细菌IPL占主导地位并不排除细菌主导的深层生物圈。现有浓度分布的逆向模型表明,古细菌的IPL合成速率从表面的约1,000 pg·mL-1沉积物y-1下降到1 km深度的0.2 pg·mL-1·y-1,相当于产生7 ×105至140个古细菌细胞⋅mL-1沉积物⋅y-1。这些对微生物生长的限制是了解深层生物圈与碳循环之间关系的重要一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号